54 research outputs found

    Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    Get PDF
    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006-10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability

    Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems

    Get PDF
    Scrub oak and pine flatwoods are two contrasting ecosystems common to the humid subtropical climate of Florida. Scrub oak forests are short in stature (<2 m) and occur on well-drained sandy soils, and pine flatwoods are much taller and occur in areas with poorly drained soils. Eddy covariance measurements were made from January 2001 to February 2003 over a scrub oak forest and from January 2002 to February 2003 over an adjacent pine flatwoods located on in central Florida, USA, and exposed to similar atmospheric conditions to evaluate how the dynamics of latent heat (lambda E) and sensible heat (H) exchanges are affected by environmental and biological variables. Annual evapotranspiration (Et) for the scrub oak was 737 and 713 mm in 2001 and 2002, respectively. Et was comparatively higher, 812 mm, in 2002 at the pine flatwoods due to higher soil moisture and leaf area. In both ecosystems, springtime increases in lambda E coincided with increasing leaf area and evaporative demand. However, H was the main energy-dissipating component in the spring due to the seasonal decrease in soil water content in the upper soil profile. In the spring, mean weekly Bowen ratio (beta, i.e. H/lambda E) values reached 1.6 and 1.2 in the scrub oak and pine flatwoods, respectively. With the onset of the summertime rainy season, lambda E became the dominant energy flux and beta fells to < 0.4. In both ecosystems, beta was strongly controlled by the interaction between leaf area and soil moisture. The lowest values of the decoupling coefficient (Omega, 0.2 and 0.25 scrub oak and pine flatwoods, respectively) also occurred during the dry springtime period indicating that surface conductance (g(s)) was the mechanism controlling energy partitioning causing high beta in both ecosystems. Et increases in the spring, when water in the upper soil profile was scarce and strongly retained by soil particles, indicated that plants in both ecosystems obtained water from deeper sources. The results from this research elucidate how energy partitioning differs and is regulated in contrasting ecosystems within the Florida landscape, which is important for refining regional hydrological and climate models

    Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems

    Get PDF
    Scrub oak and pine flatwoods are two contrasting ecosystems common to the humid subtropical climate of Florida. Scrub oak forests are short in stature (\u3c2 \u3em) and occur on well-drained sandy soils, and pine flatwoods are much taller and occur in areas with poorly drained soils. Eddy covariance measurements were made from January 2001 to February 2003 over a scrub oak forest and from January 2002 to February 2003 over an adjacent pine flatwoods located on in central Florida, USA, and exposed to similar atmospheric conditions to evaluate how the dynamics of latent heat (lambda E) and sensible heat (H) exchanges are affected by environmental and biological variables. Annual evapotranspiration (Et) for the scrub oak was 737 and 713 mm in 2001 and 2002, respectively. Et was comparatively higher, 812 mm, in 2002 at the pine flatwoods due to higher soil moisture and leaf area. In both ecosystems, springtime increases in lambda E coincided with increasing leaf area and evaporative demand. However, H was the main energy-dissipating component in the spring due to the seasonal decrease in soil water content in the upper soil profile. In the spring, mean weekly Bowen ratio (beta, i.e. H/lambda E) values reached 1.6 and 1.2 in the scrub oak and pine flatwoods, respectively. With the onset of the summertime rainy season, lambda E became the dominant energy flux and beta fells to \u3c 0.4. In both ecosystems, beta was strongly controlled by the interaction between leaf area and soil moisture. The lowest values of the decoupling coefficient (Omega, 0.2 and 0.25 scrub oak and pine flatwoods, respectively) also occurred during the dry springtime period indicating that surface conductance (g(s)) was the mechanism controlling energy partitioning causing high beta in both ecosystems. Et increases in the spring, when water in the upper soil profile was scarce and strongly retained by soil particles, indicated that plants in both ecosystems obtained water from deeper sources. The results from this research elucidate how energy partitioning differs and is regulated in contrasting ecosystems within the Florida landscape, which is important for refining regional hydrological and climate models

    Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

    Get PDF
    Multiple lines of evidence suggest that plant water-use efficiency (WUE) -the ratio of carbon assimilation to water loss- has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystemscale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance

    Management and site effects on carbon balances of European mountain meadows and rangelands

    Get PDF
    We studied carbon balances and carbon stocks of mountain rangelands and meadows in a network of 8 eddy covariance sites and 14 sites with biomass data in Europe. Net ecosystem exchange of pastures and extensively managed semi-natural rangelands were usually close to zero, while meadows fixed carbon, with the exception of one meadow that was established on a drained peatland. When we accounted for off-site losses and inputs also the carbon budget of meadows approached zero. Soil carbon stocks in these ecosystems were high, comparable to those of forest ecosystems, while carbon stocks in plant biomass were smaller. Since soil carbon stocks of abandoned mountain grasslands are as high as in managed ecosystems, it is likely that the widespread abandonment of mountain rangelands used currently as pastures will not lead to an immediate carbon sink in those ecosystems

    Liver Enzyme Abnormalities and Associated Risk Factors in HIV Patients on Efavirenz-Based HAART with or without Tuberculosis Co-Infection in Tanzania.

    Get PDF
    To investigate the timing, incidence, clinical presentation, pharmacokinetics and pharmacogenetic predictors for antiretroviral and anti-tuberculosis drug induced liver injury (DILI) in HIV patients with or without TB co-infection. A total of 473 treatment naïve HIV patients (253 HIV only and 220 with HIV-TB co-infection) were enrolled prospectively. Plasma efavirenz concentration and CYP2B6*6, CYP3A5*3, *6 and *7, ABCB1 3435C/T and SLCO1B1 genotypes were determined. Demographic, clinical and laboratory data were collected at baseline and up to 48 weeks of antiretroviral therapy. DILI case definition was according to Council for International Organizations of Medical Sciences (CIOMS). Incidence of DILI and identification of predictors was evaluated using Cox Proportional Hazards Model. The overall incidence of DILI was 7.8% (8.3 per 1000 person-week), being non-significantly higher among patients receiving concomitant anti-TB and HAART (10.0%, 10.7 per 1000 person-week) than those receiving HAART alone (5.9%, 6.3 per 1000 person-week). Frequency of CYP2B6*6 allele (p = 0.03) and CYP2B6*6/*6 genotype (p = 0.06) was significantly higher in patients with DILI than those without. Multivariate cox regression model indicated that CYP2B6*6/*6 genotype and anti-HCV IgG antibody positive as significant predictors of DILI. Median time to DILI was 2 weeks after HAART initiation and no DILI onset was observed after 12 weeks. No severe DILI was seen and the gain in CD4 was similar in patients with or without DILI. Antiretroviral and anti-tuberculosis DILI does occur in our setting, presenting early following HAART initiation. DILI seen is mild, transient and may not require treatment interruption. There is good tolerance to HAART and anti-TB with similar immunological outcomes. Genetic make-up mainly CYP2B6 genotype influences the development of efavirenz based HAART liver injury in Tanzanians

    A multinational Delphi consensus to end the COVID-19 public health threat

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Despite notable scientific and medical advances, broader political, socioeconomic and behavioural factors continue to undercut the response to the COVID-19 pandemic1,2. Here we convened, as part of this Delphi study, a diverse, multidisciplinary panel of 386 academic, health, non-governmental organization, government and other experts in COVID-19 response from 112 countries and territories to recommend specific actions to end this persistent global threat to public health. The panel developed a set of 41 consensus statements and 57 recommendations to governments, health systems, industry and other key stakeholders across six domains: communication; health systems; vaccination; prevention; treatment and care; and inequities. In the wake of nearly three years of fragmented global and national responses, it is instructive to note that three of the highest-ranked recommendations call for the adoption of whole-of-society and whole-of-government approaches1, while maintaining proven prevention measures using a vaccines-plus approach2 that employs a range of public health and financial support measures to complement vaccination. Other recommendations with at least 99% combined agreement advise governments and other stakeholders to improve communication, rebuild public trust and engage communities3 in the management of pandemic responses. The findings of the study, which have been further endorsed by 184 organizations globally, include points of unanimous agreement, as well as six recommendations with >5% disagreement, that provide health and social policy actions to address inadequacies in the pandemic response and help to bring this public health threat to an end.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe
    corecore